激光器件专集 1990年12月

Special Issue on Laser Devices 由 玉 光 CHINESE JOURNAL OF LASERS

Er3+:Y3-3xAl5O12 和 Erx+Yb1-xP5O14 晶体的光谱强度参数

于庆元 张思远 干亚勤

(中国科学院长春应用化学研究所,130022)

(成都西南技术物理研究所,610015)

周了33个坐谱支项17个方程组,用最小

提要. 本文报道了用 J-O 理论计算的 Ersa: Ya-acA5O12 和 Ersa+Yb1-cP5O14 两种晶体中 Ersa+ 五种浓度的振子强度、Q,参数、辐射跃迁几率与荧光分支比。并观察了这些参数的变化规律。 关键词:掺铒钇铝石榴石,五磷酸镱铒,振子强度

Spectroscopie parameters of Er³⁺ in Er³⁺: Y_{3-3x}Al₅O₁₂

and Era+Yb1-aP5O14 crystals

Wang Qingyuan, Zhang Siyuan, Yu Yaqin (Changchun Institute of Applied Chemistry, Academia Sinica, Changchun)

> Chen Qinghan (Southwest Institute of Technical Physics, Chengdu)

Abstract: The oscillator strength, Ω_o parameters, radiation transition probability and fluorescence branching ratio of Er^{3+} in Er^{3+}_{3*} : $Y_{2-3*}Al_5O_{12}$ and $Er^{3+}_{2}Yb_{1-*}P_5O_{14}$ crystals by using Judd-Ofelt method are reported and some variation regularity of these parameters have been observed.

Key words: Er: YAG(Er_{3x}^{3} ; Y_{3-3x}Al₅O₁₂), ytterbium erbium pentaphophate (Er_{x}^{3} ; Yb_{1-x} P_5O_{14}), Oscillator strength

众所周知,用 Judd-Ofeld 理论^[1,2], 计算稀土离子在某种新型基质中是否存在激光行为 是比较成熟且得到广泛应用的方法。 但研究者多是针对某一掺杂离子某一个浓度进行的计 算。 为了观察掺杂离子浓度在大范围内变化时光谱强度的变化规律,我们近年来展开了这方 面的研究工作。现将 $Er_{3*}^{a*}: Y_{8-3*}Al_5O_{12}$ 和 $Er_{*}^{a*}Yb_{1-*}P_5O_{14}$ 两系列研究结果分述于后。

研究晶体系列含量如下:

a. Er3+: Y3-3xAl5O12(x=29.06at%, 20.57at%, 0.788at%)

b. $\operatorname{Er}_{x}^{3+}\operatorname{Yb}_{1-x}\operatorname{P}_{5}\operatorname{O}_{14}(x=0.2, 0.8)$

用日本 UV-365 型分光光度计记录了上述两种样品五个不同浓度的 Er³⁺ 在 200 nm~ 2500 nm 波段内的吸收光谱。用过去相同的方法^[3] 计算了五个 Er³⁺ 浓度的振子强度、Q₄参

收稿日期: 1990年1月19日。

数、自发辐射电偶和磁偶跃迁几率及荧光分支比等参数。

中 国 游 子 Special Issue on Laser Devices

1. 振子强度与 Ω_λ 参数

154176 0001 red mesed

实验振子强度用下列诸式求出。

$$P_{exp} = 4.318 \times 10^9 \int s(\sigma) d\sigma$$

中 国 激 光

17 卷

3

Ŧ.

R

-

2

5

-

R

5

S.K.

14

$$P_{exp} = P_{ed} + P_{md}$$

 $P_{ed} = \frac{8\pi^2 m c\sigma}{3h(2J+1)} \cdot \frac{(n^2+2)^2}{9n} \sum_{\lambda=2,4,6} \Omega_{\lambda} |\langle 4f^N(\alpha SL) J \| U^{\lambda} \| 4f^N(\alpha S'L') J' \rangle|^2$ 上式中 $\langle \| U^{\lambda} \| \rangle$ 单位张量约化矩阵元采用的是文献 [4] 中的数据。

对 $Er_{3\sigma}^{3+}$:Y_{3-3σ}Al₅O₁₂ 晶体用了 16 个光谱支项, 13 个方程组。 对 Er_{σ}^{3+} Yb_{1-σ}P₅O₁₄ 晶体 用了 33 个光谱支项 17 个方程组,用最小二乘方拟合出了这两个晶体的 Ω_{2} 参数和振子强度。

	Br ³⁺ 浓度						
27、	29.06 at%	20.57 at%	0.778 at%	单位			
Ω_2	0.32	0.31	1.35	$\times 10^{-20} { m cm}^2$			
\mathcal{Q}_4	0.83	1.21	A 10 1.71	$\times 10^{-20} \mathrm{cm}^2$			
Ω_6	0.51	0.79	1.62	$\times 10^{-20} {\rm cm}^2$			
	RMS=1.6×10-7	RMS=2.3×10-7	RMS=1.3×10-7				

表 1 $\operatorname{Er}^{3+}_{3\sigma}$: Y_{3-3w}Al₅O₁₂ 晶体的 Ω_{λ} 参数 defense of the second seco

表 2 $\mathbf{Er}_{a}^{3+Y}\mathbf{b}_{1-a}\mathbf{P}_{5}\mathbf{O}_{14}$ 晶体的 Ω_{λ} 参数

ition probability and	raretezz, rolliscion franc	Er ³⁺ 浓度	odT stearted Ac
	0.8	0.2	单位一动的
Ω_2	0.7	3.3	$\times 10^{-20} {\rm cm}^2$
$arOmega_4$	1.4	3.4	$ imes 10^{-20} { m cm}^2$
\mathcal{Q}_6	1.1	4.4	$ imes 10^{-20} { m cm}^2$
	$RMS = 3.0 \times 10^{-7}$	$RMS = 6.4 \times 10^{-7}$	P.O.D Cacilator at

衰3 Er3+:Y3-3xAl5012 晶体中 Er3+ 的振子强度

谱项	光谱区(cm-1)	P _{exp} (×10 ⁶) Er 29.0	$P_{cal}(imes 10^6)$ 06at%	$\begin{array}{c} P_{\exp}(\times 10^6) \\ \text{Er 20.} \end{array}$	$P_{cal}(imes 10^6)$ 57at%	P _{exp} (×10 ⁶). Er 0.7	$P_{cal}(imes 10^6)$ 88at%
4I15/2-2G7/2, 2K15/2	28720~27840	0.65	0.49	0.66	0.68	1.09	1.09
-4G9/2	27920~27660	0.98	0.85	1.26	1.26	2.15	1.85
$-4G_{11/2}$	27840~27000	2.32	2.46	3.07	3.17	7.32	7.30
$-({}^{2}G, {}^{4}F, {}^{2}H)_{9/2}$	27160~25500	0.45	0.39	0.45	0.59	0.88	0.92
$-{}^{4}F_{3/2}$	25100~23800	0.24	0.14	0.47	0.27	0.44	0.43
$-4F_{5/2}$	23200~22460	0.39	0.30	0.91	0.46	0.72	0.74
$-4F_{7/2}$	22500~21660	1.07	1.08	1.04	1.63	2.31	2.52
-2H11/2	21400~19860	1.65	1.40	1.97	1.80	4.01	4.06
-4S3/2	19960~18580	0.43	0.25	0.42	0.38	0.68	0.61
$-4F_{9/2}$	$16280 \sim 14500$	1.17	1.24	2.04	1.83	2.52	2.71
-4I11/2	10800~9800	0.55	0.26	0.58	0.40	0.71	0.66
-4I13/2	7300~5900	0.86	1.24	1.94	1.58	2.46	2.17
- particular a se		RMS=1.6×10-7		RMS=2.3×10-7		RMS=1.3×10 ⁻⁷	

Er3+:Y3-3@Al5O12和 Er2+Yb1-@P5O14 晶体的光谱强度参数

表4 Er³⁺_aYb_{1-x}P₅O₁₄ 晶体中 Er³⁺ 的振子强度

		-	m0 8	Err) 2
谱项	光谱区(cm-1)	$P_{\exp}(\times 10^6)$	$P_{cal}(\times 10^{6})$	$P_{exp}(\times 10^6)$	$P_{cal}(\times 10^6)$
⁴ <i>I</i> _{15/2} ⁻⁴ <i>I</i> _{13/2}	7634~6098	2.06	1.66	4.07	3.40
-4I11/2	11261~9653	1.32	0.47	9.10	11.60
-4I9/2	12987~11843	0.28	0.32	0.46	0.97
-4F9/2	15929~14706	1.52	1.96	3.93	5.44
-4S3/2	18727~17986	0.45	0.45	1.41	1.09
_2H _{11/2}	19920~18557	3.04	2.26	10.41	8.32
-4F7/2	21277~19920	1.65	1.85	5.10	4.75
$-{}^{4}F_{5/2}$ $-{}^{4}F_{3/2}$	} 23148~21645	0.90	0.86	2.90	2.10
$-({}^{2}G, {}^{4}F, {}^{2}H)_{5/2}$	25381~23923	0.79	0.68	1.30	1.69
$-{}^{4}G_{11/2}, {}^{4}G_{9/2}$ ${}^{2}K_{15/2}, {}^{2}G_{7/2}$	} 29586~25381	5.5 5.76	8.6 6.19	19.86	20.96
	NI (1949) NG. 282 III/	RMS=	3.0×10^{-7}	RMS=6	.4×10-7

所得结果分别列于表 $1 \sim 表 4$ 。从表 1、表 2 的数据中可以看出,两种晶体中 Er^{3+} 的 Ω_{λ} 参数 均随含量增加而降低,振子强度 P 亦随浓度增加而减小。

2. 自发辐射电偶和磁偶跃迁几率 Aea、Ama 与荧光分支比 β。则用下面诸式计算:

 $A_{ed} = \frac{64\pi^4 \theta^2 \sigma^3}{3h(2J+1)} \cdot \frac{n(n^2+2)^2}{9} \sum_{\lambda=2,3,6} \Omega_{\lambda} |\langle 4f^N(\alpha SL) J \| U^{\lambda} \| 4f^N(\alpha' S'L') J' \rangle |^2$

 $Er^{3+}\Delta J = 0$, ±1等谱项的磁偶跃迁则用下式计算:

$$\begin{split} A_{md} = & \frac{64\pi^4 \sigma^3 n^3}{3h(2J+1)} \big| \sum_{\alpha S I, \alpha' S' L'} c(\alpha S L) c(\alpha' S' L') \langle 4f^N(\alpha S L) J \| M \| 4f^N(\alpha' S' L') J' \rangle \big|^2 \\ & M = (-e\hbar/2mc) (L+2S) \end{split}$$

当J'=J时

 $\langle f^N \alpha S L J \| M \| f^N \alpha' S' L' J' \rangle$

= $\delta(\alpha, \alpha')\delta(S, S')\delta(L, L')\beta[(2J+1)]/4J(J+1)^{1/2}[S(S+1)-L(L+1)+3J(J+1)]$ 当 J'=J-1 时

 $\langle f^{N} \alpha S L J \| M \| f^{N} \alpha' S' L' J' - 1 \rangle$

 $= \delta(\alpha, \alpha')\delta(S, S')\delta(L, L')\beta\{(S+L+1)^2 - J^2][J^2 - (L-S)^2]/4J\}^{1/2}$ 当 J'=J+1 时

$$\begin{split} \langle f^{N} \alpha SLJ \| M \| f^{N} \alpha' S'L'J' + 1 \rangle = \delta(\alpha, \alpha') \delta(S, S') \delta(L, L') \beta \{ [(S+L+1)^{2} - (J+1)^{2}] \\ \times [(J+1) - (L-S)^{2}]/4(J+1) \}^{1/2} \end{split}$$

这里 $\beta = e\hbar/2mc$

 $\beta_{c} = \left[(\alpha'S'L')J'; (\overline{\alpha SL})\overline{J} \right] = A\left[(\alpha'S'L')J'; (\overline{\alpha SL})\overline{J} / \sum_{SLJ} A\left[(\alpha'S'L')J'; (\overline{\alpha SL})\overline{J} \right]$ 用上诸式计算出的 A_{ed} 、 A_{md} 、 β_{c} 等数值列于表 5 和表 6。

从表 5 和表 6 的数据中可以看出, Er³⁺ 在两个系列晶体中的跃迁几率随浓度增 加 而 降 低, 荧光分支比则不随浓度变化。

156

17卷

4

Æ

R

120

-

1

T

1

12

(¹/₂)

A . 20V

(Ar

14

10

14

4

	表5	$Er_{3x}^{3+}: Y_{3-3x}Al_5O_{12}$	晶体中 Er ³⁺	的跃迁几率与荧光分支比
--	----	------------------------------------	----------------------	-------------

谱项跃迁	中心波数(cm-1)	Er 29.	06at%	Er 20.5	57 at%	Er 0.77	8at%	Er29. Er0	.06 Er:	20.57 :%
⁴ <i>I</i> _{13/2} – ⁴ <i>I</i> _{15/2}	λ 1.5 μm	A _{ed}	A _{md}	A _{ed}	A _{md}	A _{ed}	Amd	β1	β_2	β
	6700 0+.0	77.7	67.5	119.2	67.5	189.5	67.6	1	1	1
⁴ <i>I</i> _{11/2} - ⁴ <i>I</i> _{13/2}	3660	10.9	14.3	16.7	14.3	26.5	1598	0.23	0.20	0.16
-4 <i>I</i> 15/2	10360	83.6		127.7		212.4	2992	0.77	0.80	0.84
4I9/2-4I18/2	15310	30.7		47.4		75.3	Ates II	0.22	0.23	0.25
-4I _{15/2}	12700	106.0		155.1		219.6	8888	0.76	0.76	0.74
4F9/2-4I9/2	2610	3.2	3.3	0.4	3.3	1.2	3958	0.006	0.003	0.002
4I11/2	4950	34.7	9.3	52.1	9.3	83.3		0.04	0.05	0.04
⁴ <i>I</i> _{13/2}	8610	48.4	6	71.3		106.4		0.04	0.06	0.04
4I15/2	18400	1079.6	短史	1101.7	表1,3	2373.0	~1 表: 如此的	0.92	0.89	0.92
全裂化等来 : 某计	$\lambda = 1.55 \mu m$	。 1 支 f <i>B</i>	tal Mar	hind bo	同業は	发俱 反正	电偶和	发辐射	自	2
4S3/2-4I9/2	5680	37.3	的权能	57.3	2(S-	88.1	MATTER	1010 EB		
- 4 I _{11/2}	8020	23.8		37.0	A) 12712	58.5	4 (2) +	ह जल		
$-4I_{13/2}$	11680	301.11		468.8	王鼎用	747.8	等谱项的	上土 。	J = 0	$\mathbb{E}r^{3+}$
$-4I_{15/2}$	18380	770.3	$() \langle 4f^{*}$	1197.0	o(aSL	1909.2	$\frac{\pi^4 \sigma^3 n^3}{27 \pm 17}$	69	A.	
² <i>H</i> _{11/2} - ⁴ <i>I</i> _{15/2}	19200	1535.0)(L+2	1970.6	$\langle -\rangle = I$	4432.2	<u></u>			
4F7/2-4I15/2	20460	2013.4		3096.2		4746.6			一 1 1	$\leq J' =$
4 F 5/2-4 I 15/2	22140	885.8		1361.1		2176.67	d'S'IJJ	$ M f^{2}$	SLJ	$\langle f^{y} \alpha$
${}^{4}G_{3/2} - {}^{4}I_{15/2}$	22600 (14	762.5	$(J+1)^{1}$	1168.7	(2J +	8 1864.1	S')8(8)8(%	$\delta(a, a)$	
² H _{9/2} - ⁴ F _{9/2}	9290	19.9	63.8	29.4	63.8	47.5	63.8	िंधि 1	-6=	• 7 座
-4I _{9/2}	11900	5.8	2.6	7.6	2.6	16.0	2.6	PT RID N.		
-4I _{11/2}	14240	202.7	54.4	544.5	54.4	507.8	54.4	(2) 8 年		
-4I _{19/2}	17900	810.9	1200.8	2003.4		2003.4		11	+7=	北峰
-4I15/2	*(959.5	S')8(I	1449.6	-δ(a, c	2203.2	f#6'8'I	$\mathcal{J} \ M \ $	NaST.	V
4G11/2-2H11/2	7200	30.9	[e(8-	28.3	+ いり	53.8	in controls			
$-4F_{9/2}$	11090	86.9	4.7	93.3	4.7	343.7	4.7	/2 mo	$l = e\hbar_{i}$	这里人
-4I _{9/2}	13700	49.4	(11.1)	60.3	1.1 A	150.1	Ji.I.a	(a'S'L)		· ·
-4I11/2	16040	610.0	0.11	890.3	0.11	1252	0.11	15 11- 20		
-4I _{13/2}	19700	1035.4	63.8	1498.7	63.8	2451	63.8	四 山 型		
$-4I_{15/2}$	26400	5172.3	「个系列	6698.8	et (ff)	14890.7		加水市		》 低,带-

增刊

X.

ii.

ja i

i.

k

jų,

Z,

1

Li)

1

1

匾

6

Erst: Ya-asAlsO12和 Erst Yb1-asP5O14晶体的光谱强度参数

157

	中心波紫	t (cm ⁻¹)	Er 0.8	Er 0.2	Er 0.8	Er 0.2
谱坝跃亡 ————————————————————————————————————	Er 0.8	Er 0.2	Aed Amd	Aed Amd	β1	β2
⁴ <i>I</i> _{13/2} ⁻⁴ <i>I</i> _{15/2}	6623	6579	102.2 44	248.9 43	1 10 / 40 70	
4I _{11/2} -4I _{13/2}	3623	3699	14.4 9.3	38.3 9.9	0.18	0.19
-4I15/2	10246	10278	112.77	211.0	0.82	0.81
4I9/2-4I13/2	5846	5921	39.4	99.0	0.25	0.28
-4I _{15/2}	12469	12500	115.1 15.1	236.7	0.74	0.72
4F9/2-4I9/2	2845	2837	0.55 2.9	2.3 2.8	0.002	0.001
-4I11/2	5068	5059	51.8 6.6	128.3 6.0	0.04	0.03
-4I18/2	8691	8758	59.4	174.3	0.04	0.04
-4115/2	15314	15377	1039.4	3650.9	0.92	0.92
⁴ S _{3/2} - ⁴ I _{9/2}	5981	59 50	56.9	144.1	toto ye	-
-4I11/2	8204	8172	35.0	84.6	1 Jare	K.
-4I _{15/2}	11029	11871	436	1062.5	sp ent apoil an	al solorra
-4I _{15/2}	18430	19450	1086.4	2618.4	eoretically and	di boibute
² H _{11/2} - ⁴ I _{15/2}	19194	19194	1888.2	6962.8	g the antropo	monitorn facet and
4F7/2-4I15/2	20534	20534	2684.0	6843.1	ande abrow	Ray
${}^{4}F_{9/2} {}^{-4}I_{15/2}$	22222	22222	1238.9	2983.9	Mar Manager and	Ling
${}^{4}F_{3/2} {}^{-4}I_{15/2}$	22573	22421	1048.4	2476.3		1.2 25 54.
² H _{9/2} - ⁴ F _{9/2}	9256	9294	23.1 48.7	70.4 49.2	The first differences	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
-4I _{9/2}	12101	12131	7.5 1.0	26.4 1.0	12日前1日日(2日日) 1日前日前日前の1日前日日	XILE OF
-4I11/2	14324	14353	255.5 37	797.7 37.1	C SIGNA CONTRACTOR	
-4I _{13/2}	17947	18052	1070.7	2982.9	Total Canada	
-4I _{15/2}	24570	24631	1221.3	3240.3	日本一一 Spin. 当会主: A	and second and other
⁴ G _{11/2} - ² H _{11/2}	7191	7261	30	86.5	AT A WEW	至 許報。
$-4F_{9/2}$	11071	11118	114.3 3.1	514.7 3.2	自民限者因其	新聞 , 違论
-4I9/2	13916	13955	69.1 0.8	239.0 0.8	此器法 原言則	二本國公
-4I11/2	16139]	16177	699.9 0.1	2106.3 0.1	的"组织"。原则	n (in Chi
THERE AND	10762	19876	1244.2 42.9	3864.0 43.8	且不同。如果自	的形积值
-4I13/2	19102	1				

(下转第147页)

a: 退火前; b: 退火后。d=1.3 mm, Cr^{3+0.05}wt%

能谱仪测量了晶体基体,结果表明在晶体中含有 As 和 Fe,这些杂质是晶体存在自吸收的 另一重要因素。另外,晶体的自吸收还可以从不掺杂 Cr³⁺ 的 CdWO₄ 晶体退火前后颜色变化 来判断。大气中生长的晶体一般呈现玫瑰红色、淡黄色,经大气中退火,颜色会逐渐变浅,乃至 无色。

本组沈雅芳、张新民、朱汝德以及上海科技大学88届应届毕业生顾及参加了部分工作, 谨 表感谢。

参考文献

- 1 Wulf Kolbe et al; IEEE J. Quant. Electr., **QE-21**, 1596(1985)
- 2 M. R. Farukhi, IEEE Transactions on Nuclear Science, 29(3), 1237(1982)
- 3 徐军 et al., 硅酸盐学报, 待发表
- 4 A. W. Sleight, Acta Crystallogr., B28, 2899(1972)
- 5 M. J. J. Lammers, et al., Phys. Stat. Sol., (a), 63, 569(1981)

(上接第157页)

A think the second s

the ATCO crystal, and the efficient nonlinear coefficients baye b

根据我们对 Er^{3+} 离子在 Er^{3+}_{3*} : $Y_{3-3\sigma}Al_5O_{12}$ 和 $Er^{3+}_{\sigma}Yb_{1-\sigma}P_5O_{14}$ 两个系列 5 个晶体的光 谱强度参数计算的结果,初步观察到下面几点规律:

1. Er³⁺ 离子的振子强度,不管在那种基质中,均随 Er³⁺ 离子浓度增加而降低。2. Er³⁺ 离子的唯像强度参数 Ω_λ,不管在何种基质中,都随浓度增加而减小,减小程度,随基质不同略 有不同。3. 在两种基质中, Er³⁺ 的自发辐射跃迁几率均随浓度增加而降低。4. Er³⁺ 离子 的荧光分支比,在两种基质中均不随浓度变化而改变。

以上规律性对探索新晶体,对选择最佳激活离子的掺入量,具有一定的指导意义。

参考文献

- 1 B. R. Judd, Phys. Rev., 127, 750(1962)
- 2 G. S. Ofelt, Chem. Phys., 37, 511(1962)
- 3 王庆元 et a'., 光学学报, 6(4), 307(1986)
- 4 W. T. Carnall et al., J. Chem. Phys., 49(10), 4424(1968)